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What is a 
distributed system?



Data processing spread 
over time & space
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Why use a 
distributed system?



Scale



Scale
Performance
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How do you break a 
distributed system?







Crash
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How can that go wrong?
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DB + memcached is not 
a ‘good’ system



What makes a good 
distributed system?





CAP Theorem



Consistency
Availability
Partition tolerance

Pick two!



Appears to be a single-copy of the data to an 
outside observer.

Weaker models exist, e.g. ‘eventual consistency’.

Consistency



Node failures don’t prevent survivors from 
operating.

Availability



Partition: network can lose arbitrarily many 
messages from one node to another

Tolerant: other properties remain true

Partition tolerance



Can’t avoid partitions!

CP or AP only!





CAP → PAC/ELC



# pac/elc system design 

if ( partition ) { 
    pick(“availability”, “consistency”) 
} 
else { 
    pick(“low latency”, “consistency”) 
}



Still simplistic



Reads vs writes



Majority-side of a partition 
Can write (appears consistent) 
Can read (available)

Minority-side of a partition 
Can’t write (not available) 
Can read (available – but stale)



‘Practical 
Consistency’



Do I know when a write is committed?

How do I read only committed and/or 
current data?



Thinking about writes...



Durability
Convergence

Error recovery



Do we know when 
writes are durable?
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# write concern 

MongoDB->connect( $url, 
    { w => 1 } 
); 

MongoDB->connect( $url, 
    { w => ‘majority’ } 
);
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How will the system 
converge on recovery?
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• Rollback

• Conflict records

• Conflict-free replicated data type (CRDT) 
(e.g. “add to set”)



What do we do with a 
write error?
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Answers are specific to 
your application!



Thinking about reads...



Recency
Durability
Latency



Do we care if we read 
the latest write?



Do we care if data we 
read rolls back?



Trade recency for 
durability
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# read concern (3.2+) 

MongoDB->connect( $url, 
    { read_concern_level => ‘local’ } 
); 

MongoDB->connect( $url, 
    { read_concern_level => ‘majority’ } 
);
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Trade recency for 
latency



Round-trip time
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# read preference 

MongoDB->connect( $url, 
    { read_pref_mode => ‘primary’ } 
); 

MongoDB->connect( $url, 
    { read_pref_mode => ‘nearest’ } 
);
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Still another ‘gotcha’...



Partition detection race!
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What if this isn’t OK?





‘Quorum read’



Read-via-write



# find_one_and_update (CAS*) 

$mc = MongoDB->connect( $url, 
    { w => ‘majority’ } 
); 

... 

$doc = $coll->find_one_and_update( 
    { _id => $id }, 
    { ‘$inc’ => { _dummy => 1 } }, 
);



Take aways...



CAP is simplistic 

Reality is complex



Needs are 
application specific



When writing, consider...

Durability 
Convergence 
Error recovery



When reading, consider...

Recency vs durability 
Recency vs latency  
Nuclear option



Questions?

Email: david@mongodb.com 
Twitter/IRC: @xdg
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