
David Golden YAPC::NA 2016

What is a 
distributed system?

Data processing spread
over time & space

Node A 
(primary)

Node B 
(secondary)

Node C 
(secondary)

RWRO

‘Replica Set’

DB

RW

memcached

RW

memcached

Node A 

Node B  Node C 

RWRW

etcd

RW

Why use a
distributed system?

Scale

Scale
Performance

Scale
Performance
Redundancy

How do you break a
distributed system?

Crash

Crash
Packet loss

Crash
Packet loss

Garbage collection

Crash
Packet loss

Garbage collection
Process swapped out

DB memcached

DB memcached

A

1

Update...

DB memcached

A

1

A

2

Update...

DB memcached

A

1

A

A

3

2

Update...

DB memcached

A A

Read...

A

How can that go wrong?

DB memcached

A

A

1
2

DB memcached

A

A
GC

PAUSE

1
2

3

DB memcached

A

A
GC

PAUSE

B

5
6

B

4

B

DB memcached

A

A
GC

PAUSE

B

B

B

7

GC
DONE

DB memcached

A

A
GC

PAUSE

B

B

B

7

GC
DONE

A

8

DB memcached

A

A

B

A

BA

DB + memcached is not
a ‘good’ system

What makes a good 
distributed system?

CAP Theorem

Consistency
Availability
Partition tolerance

Pick two!

Appears to be a single-copy of the data to an
outside observer.

Weaker models exist, e.g. ‘eventual consistency’.

Consistency

Node failures don’t prevent survivors from
operating.

Availability

Partition: network can lose arbitrarily many
messages from one node to another

Tolerant: other properties remain true

Partition tolerance

Can’t avoid partitions!

CP or AP only!

CAP → PAC/ELC

pac/elc system design

if (partition) {
 pick(“availability”, “consistency”)
}
else {
 pick(“low latency”, “consistency”)
}

Still simplistic

Reads vs writes

Majority-side of a partition 
Can write (appears consistent) 
Can read (available)

Minority-side of a partition 
Can’t write (not available) 
Can read (available – but stale)

‘Practical
Consistency’

Do I know when a write is committed?

How do I read only committed and/or
current data?

Thinking about writes...

Durability
Convergence

Error recovery

Do we know when
writes are durable?

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

Write goes to primary

A

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

Replicates to majority → committed

A

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Partition separates primary

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Write to primary can’t replicate
But do we find out?

B X

write concern

MongoDB->connect($url,
 { w => 1 }
);

MongoDB->connect($url,
 { w => ‘majority’ }
);

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A

OK!

{w => 1}

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A

{w => ‘majority’}

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

{w => ‘majority’}

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

OK!

{w => ‘majority’}

How will the system
converge on recovery?

Node B 
(secondary)

Node A 
(primary)

Node C 
(primary)

A
A

A

Old primary steps down
New primary elected

B

Node B 
(secondary)

Node A 
(secondary)

Node C 
(primary)

A
A

A

New writes occur and replicate

B C
C

Node B 
(secondary)

Node A 
(secondary)

Node C 
(primary)

A
A

A

Partition heals
Returning node rolls back history

B C
CX

Node B 
(secondary)

Node A 
(secondary)

Node C 
(primary)

A
A

A

Returning node catches up with primary

C
C

C

• Rollback

• Conflict records

• Conflict-free replicated data type (CRDT) 
(e.g. “add to set”)

What do we do with a
write error?

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Write to primary can’t replicate

B X

{w => ‘majority’}

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Majority write concern will timeout with an error  
 

Retry?
Ignore?

B X

Error!

{w => ‘majority’}

Answers are specific to
your application!

Thinking about reads...

Recency
Durability
Latency

Do we care if we read
the latest write?

Do we care if data we
read rolls back?

Trade recency for
durability

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Write to primary can’t replicate

B X

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Dirty read from partitioned primary

B X

B

read concern (3.2+)

MongoDB->connect($url, 
 { read_concern_level => ‘local’ }
);

MongoDB->connect($url, 
 { read_concern_level => ‘majority’ }
);

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Without partition, majority read 
concern lags replication

A

B

B

B

{read_concern_level => ‘majority’}

Trade recency for
latency

Round-trip time

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

RTT for each
data center

US-EASTUS-WEST

100ms100ms 10ms

read preference

MongoDB->connect($url,
 { read_pref_mode => ‘primary’ }
);

MongoDB->connect($url,
 { read_pref_mode => ‘nearest’ }
);

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Primary write 
starts replicating

US-EASTUS-WEST

B

B

B

Node B 
(secondary)

Node A 
(primary)

Node C 
(secondary)

A
A

A

Meanwhile, 
read from 

nearest node

US-EASTUS-WEST

B

B

B

A

10ms

Still another ‘gotcha’...

Partition detection race!

Node B 
(new primary)

Node A 
(‘lame-duck’ primary)

Node C 
(secondary)

A
A

A

Doesn’t know  
about new primary

Hasn’t stepped down yet

Has discovered  
new primary

Just elected primary

Node B 
(new primary)

Node A 
(‘lame-duck’ primary)

Node C 
(secondary)

A
A

A

Writes can commit
via new primary

B
B

Doesn’t know  
about new primary

Hasn’t stepped down yet

Node B 
(new primary)

Node A 
(‘lame-duck’ primary)

Node C 
(secondary)

A
A

A

‘Lame-duck’ primary 
returns old

committed data

A

B
B

What if this isn’t OK?

‘Quorum read’

Read-via-write

find_one_and_update (CAS*)

$mc = MongoDB->connect($url,
 { w => ‘majority’ }
);

...

$doc = $coll->find_one_and_update(
 { _id => $id },
 { ‘$inc’ => { _dummy => 1 } },
);

Take aways...

CAP is simplistic 

Reality is complex

Needs are 
application specific

When writing, consider...

Durability 
Convergence 
Error recovery

When reading, consider...

Recency vs durability 
Recency vs latency  
Nuclear option

Questions?

Email: david@mongodb.com 
Twitter/IRC: @xdg

Photo credits:
• 9:00 AM: Mitch Martinez https://www.youtube.com/watch?v=ScDYZXIcihc
• Camel race: Jason Mrachina https://www.flickr.com/photos/w4nd3rl0st/5944487713 by-nc-nd
• Partition: Marc Venezia - Own work Picture taken during a personal trip in Middle-East, CC BY-SA 3.0, https://

commons.wikimedia.org/w/index.php?curid=11469551
• Eric Brewer: By Vera de Kok - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?

curid=39817816
• Daniel Abadi: @daniel_abadi profile picture https://pbs.twimg.com/profile_images/254073578/head2.jpg
• Fireball: By Photo courtesy of National Nuclear Security Administration / Nevada Site Office - This image is

available from the National Nuclear Security Administration Nevada Site Office Photo Library under number
XX-34. Public Domain, https://commons.wikimedia.org/w/index.php?curid=190949

